
Realtime Synthesis in Games

Sonic College 2019
Jakob Schmid

Overview
● Purpose and History of Realtime Synthesis in Games
● Dynamic Music in Games
● Audio Plugins
● Plugin Platforms
● Example Unity Plugins

Purpose of Realtime Synthesis in Games

MIDI-like Sequencing
● Sequencing of samples or real-time synthesis
● Key changes
● Removing notes
● Procedural / generative music

Cubase (1989)

Real-time Synthesis
● Parameter changes controlled from game
● Subtle changes in timbre accompany game events
● Variations in timbre retain player interest even though sequence repeats

Ableton Live 10: Operator

History of Realtime Synthesis in Games

Realtime Synthesis was the Norm
● 1970s to mid 1980s: hardware-based realtime synthesis
● Hardware synthesizer-based hardware platforms

○ Arcade machines (1970s and forward)
○ Atari 2600 (1979)
○ ZX Spectrum (1982)
○ Commodore 64 (1982)

Commodore 64ZX Spectrum

Marble Madness

Atari 2600

Real-time Synthesis was the Norm
● Sound chips with fixed number of DCOs controlled from CPU
● Possible to play samples using clever tricks
● Sample playback hardware become the norm in 1985 and forward

Amiga 1000 (1985),
sample-based audio hardware

ZX Spectrum Speaker
● 1 tone generator
● 1-bit volume, on or off

Commodore 64 SID Chip
● 3 DCOs
● Waveforms: pulse, triangle, saw, noise
● Ring modulation, oscillator sync
● Multimode filter: low-, high-, bandpass

(6dB/12dB rolloff)
● 3 Envelope generators

Yamaha YM2151
● FM 4-operator synthesis
● 8 channel polyphony
● Used in many arcade games by Atari, SEGA,

and Konami
● See also

https://vgmrips.net/packs/chip/ym2151

https://vgmrips.net/packs/chip/ym2151

Summary
● MIDI-like sequencing allows generating or modifying notes
● Realtime synthesis allows for game-controlled parameter changes
● Hardware based realtime synthesis was the norm until mid 1980s
● Early audio hardware ranged from 1-bit tone generators to subtractive

synthesis and FM synthesis.

Dynamic Music in Games

Dragon Warrior
● NES 1986
● Dungeon music changes key with

dungeon level, assisting in finding your
way around

Otocky
● NES 1987
● Score is fully generated by gameplay

elements

Electroplankton
● NDS 2005
● Generative music toy

Spore
● PC 2008
● Generative score by Brian Eno
● Uses Pure Data

Dead Space
● Xbox 360, PS3 2008
● Uses traditional dynamic orchestral

music
● Atonal orchestral stings are

triggered by the player seeing a
mutant for the first time

FRACT OSC
● PC 2014
● First-person puzzle game where you

construct a realtime-synthesized piece of
music

● Uses Pure Data

Rise of the Tomb Raider
● PS4, Xbox One 2015
● Dynamic Percussion System for

battle sequences
● Generated drum sequence that

reacts to battle intensity level

Tetris Effect
● PS4, Xbox One 2018
● Quantizes player input to

beats and triggers samples
in time with music

● Samples are pitched to
reflect key changes in music

Summary
● Games have had dynamic music since 1980s
● Several games generate music via Pure Data
● Dynamic sequencing create variation and expresses game state
● Games can use player input as sequencing input

Audio Plugins

Modern Realtime Synthesis
● Implemented as audio plugins in sound engines
● Normally rendered on CPU, not in dedicated hardware

FMOD Studio plugin

Audio Plugin Types
● FMOD Studio Plugin
● Wwise Sound Engine Effect Plugin
● Unity Native Audio Plugin
● VST 2.4
● Audio Units (Core Audio)

What is an Audio Plugin?
● A piece of code that outputs samples to an audio buffer
● Some wrapping that enables parameters and stuff

Audio Buffers
An audio buffer is a block of memory containing samples:

 S0 S1 S2 S3 S4 S5 S6 S7

Rendering to Audio Buffer
An audio buffer is a block of memory containing samples:

 buffer -> S0 S1 S2 S3 S4 S5 S6 S7

 float [] buffer = new float[SAMPLE_COUNT];

Rendering code fills buffer with samples:

 void process(float [] output, int length)

 {

 for(int s = 0; s < length; ++s)

 output[s] = COMPUTE SAMPLE;

 }

Stereo Audio Buffer
An interleaved stereo audio buffer:

 L0 R0 L1 R1 L2 R2 L3 R3

Rendering to Stereo Audio Buffer
An interleaved stereo audio buffer:

 L0 R0 L1 R1 L2 R2 L3 R3

Rendering code:

 float [] buf = new float[SAMPLE_COUNT * 2];

 void process(float [] output, int length) {

 int idx = 0;

 for(int s = 0; s < length; ++s) {

 output[idx++] = COMPUTE LEFT SAMPLE;

 output[idx++] = COMPUTE RIGHT SAMPLE;

 }

 }

Synths vs. Effects
Implemented exactly the same way, except:

- Effects receive audio input
- Synths receive note and parameter input

Effect Rendering
Example code for a mono effect:

 float [] input = new float[SAMPLE_COUNT];

 float [] output = new float[SAMPLE_COUNT];

 void process(float [] input, float [] output, int length)

 {

 for(int s = 0; s < length; ++s)

 output[s] = COMPUTE SAMPLE FROM input[s];

 }

Summary
● Realtime synthesis is done using software audio plugins
● Different audio software have different plugin types
● Audio plugins output samples to audio buffer
● Synths and effects are very similar, except for their input

Plugin Platforms

Plugin Platforms

Same code,
different
platforms

FMOD Studio Plugin
FMOD_RESULT F_CALLBACK Plugin_FMOD_dspprocess(

FMOD_DSP_STATE *dsp,

unsigned int length,

const FMOD_DSP_BUFFER_ARRAY * inbufferarray,

 FMOD_DSP_BUFFER_ARRAY *outbufferarray,

 [..])

{

RENDER length SAMPLES TO outbufferarray->buffers[0]

return FMOD_OK;

}

Unity Native Audio Plugin
[..] ProcessCallback([..],

float* inbuffer, float* outbuffer, unsigned int length,

int inchannels, int outchannels)

{

 RENDER length SAMPLES TO outbuffer

}

VST 2.4
void VstXSynth::processReplacing(

float** inputs, float** outputs, // input / output - buffers

VstInt32 sample_frames) // buffer size

{

 // not interleaved, left and right are separate

float* buf_left = outputs[0];

float* buf_right = outputs[1];

RENDER sample_frames SAMPLES TO buf_left AND buf_right

}

DEMO: Example Plugins in Action
● Standalone

● Unity Native Audio Plugin

● FMOD Studio

● VST 2.4

Summary
● Same code can easily be adapted for different plugin platforms
● FMOD Studio, Unity Native Audio Plugins, and VST 2.4 have similar

interfaces

Example Unity Plugins

Unity C# Plugin Structure
class MySynthBehaviour : MonoBehaviour

{

 [...]

void OnAudioFilterRead(float[] data, int channels)

{

int length = data.Length / channels;

int idx = 0;

for (int s = 0; s < length; ++s)

{

data[idx++] = COMPUTE LEFT SAMPLE

data[idx++] = COMPUTE RIGHT SAMPLE

}

}

}

Sine Synth
float phase = 0.0f;
float freq = 200.0f;
const float secondsPerSample = 1.0f / 48000.0f;
void OnAudioFilterRead(float[] data, int channels)
{

int length = data.Length / channels;
int idx = 0;
for (int s = 0; s < length; ++s)
{

float out = Mathf.Sin(phase * Mathf.PI * 2.0f);
data[idx++] = out; // left channel
data[idx++] = out; // right channel
phase += freq * secondsPerSample;
if(phase > 1.0f) phase = 0.0f;

}
}

Distortion Effect (from 140)
int D = 0; // downsample factor

void OnAudioFilterRead(float[] data, int channels)

{

if(D > 1)

{

 for (int s = 0; s < data.Length; s+=2)

 {

 data[s] = data[s / D * D]; // left channel

 data[s+1] = data[s / D * D + 1]; // right channel

 }

}

}

Music Code Example
class SpookyBeat : MonoBehaviour

{

 float s = 0;

 void OnAudioFilterRead(float[] data, int channels)

 {

 int smp = 0, length = data.Length;

 while (smp < length)

 {

 s = ++s % 288000;

 float p = (s / 288000) * 0.5f;

 float pBar = (p * 8) % 1;

 float hhAmp = (0.13f + ((pBar * 4) % 1) * -0.09f);

 // mixer

 float output = BD(pBar * 8 / 3) * 0.8f

 + HH((pBar * 8) % 1) * hhAmp

 + bass(p) * 0.2f + bass(p - 0.024f) * 0.1f;

 for (int c = 0; c < channels; ++c)

 data[smp++] = output;

 }

 }

 // Bassdrum: sine with pitch and amplitude envelope

 float BD(float p)

 {

 float env = Mathf.Clamp01(0.1f - (p % 1f)) * 10f;

 float fr = 30f + env * 100f;

 float ph = (p % 1f) * fr;

 return Mathf.Sin((ph % 1f) * 6.28f) * env;

 }

 // Hihat: noise with amplitude envelope

 float HH(float p)

 {

 return Mathf.PerlinNoise(p * 2000, 0f) * (1f - p);

 }

 // Spooky bass: FM synth

 float bass(float p)

 {

 return Mathf.Sin(p * 4000 + Mathf.Sin(p * 4000

 + Mathf.Sin(p * 3.28f) * 1111))

 * Mathf.Sin(((p * 64 / 3f) % 1) * 3.141f);

 }

}

Summary
● Unity audio plugins can be written in C#
● Unity audio plugins have the same structure as other audio plugins
● Example synth and distortion effect
● Example music code

References
Karen Collins: "An Introduction to Procedural Music in Video Games" (2009)
https://bit.ly/2FfuN6E

Igor Dall'Avanzi: "Procedural Music in AAA: Rise of the Tomb Raider and the
Dynamic Percussion System" (2016)
https://bit.ly/2HMEvjJ

Leonard J. Paul lectures about Pure Data for games
https://bit.ly/2FnIGjo

https://bit.ly/2FfuN6E
https://bit.ly/2HMEvjJ
https://bit.ly/2FnIGjo

Questions?

Atari 2600 TIA Chip
● Integrated graphics and sound
● 2 DCOs pulse waveform
● 32 pitch values (not enough)
● 4 bit volume

Audio Plugin Interface
● Audio system calls our code with buffer
● Our code writes samples to buffer
● Audio hardware outputs buffer to speaker

Wwise Sound Engine Effect Plugin
void IAkOutOfPlaceEffectPlugin::Execute(

AkAudioBuffer * io_pInBuffer, // input buffer

AkUInt32 in_uInOffset, // offset

AkAudioBuffer * io_pOutBuffer) // output buffer

 {

 float *buf = io_pOutBuffer->GetChannel(0);

 RENDER [FIXME - how many samples?] TO buf

}

VST Plugins or Audio Units in Games?

VST Plugins or Audio Units in Games?
If plugin is open source or homemade:

● Relatively easy to adapt to game audio plugin

VST Plugins or Audio Units in Games?
Most interesting VST/AU plugins are not open source.

Technically they could still work in a game, however:

● Illegal distribution: Most VST/AU plugins licensing models do not allow for
redistributing to potentially millions of users in a game.

● Limited platforms: Most VST/AU plugins are available in binary form for
Windows and Mac OS X, but not for Android, iOS, PS4, Xbox One, etc. so
would only work on computers.

VST Plugins or Audio Units in Games?
● Possible.
● Not practical!

