VectorRace
Finding the Fastest Path Through a Two-Dimensional Track

Jakob Schmid
schmid@cs.aau.dk

31st May 2005

Abstract

The algorithm described herein finds the
fastest path of an accelerating vehicle through
an arbitrary two-dimensional track. The
algorithm is usable for finding paths for vir-
tual or real computer-controlled accelerating
vehicles. The abstraction for this task is
the game of VectorRace, which is formally
defined in the article. The algorithm operates
on discrete values, and the track is defined
as line segments between whole-numbered
points. The article contains a time and
space complexity analysis of the algorithm.
Furthermore, a solution to the problem using
binary decision diagrams are investigated, but
it is argued that the aformentioned algorithm
is more efficient.

1 Introduction

Problems of finding the shortest path through
mathematically defined environments have
been the subject of much study, and methods
such as Dijkstra’s algorithm have been devised
to solve such problems[4].

The problem discussed in this article is
related to the graph theoretical shortest path
problem, but is different in that the paths
investigated in this article are subject of
acceleration rules.

The problem is modelled by the paper-and-
pencil game called VectorRace. VectorRace
is a turn-based game, where a number of
players must maneuver accelerating vehicles
represented by line segments through a track
from a starting point to a goal line. In this
article, the game is reduced to have only
a single player. Figure 1 on the following
page shows a sample single-player game of
VectorRace.

The VectorRace model developed in this
article is discrete in the sense that all points
in the model are whole numbers, except for
collision points, which are defined by the
intersection between two line segments. These
collision points have rational coordinates
which are often not whole numbers.

The intuitive problem definition is:

Given a VectorRace track, find the
path from the starting point to the
goal line with the fewest number of
line segments.

A more formal problem definition is devel-
oped later in the article.

Notation

In this article, the following conventions are
used:

legend:

starting point goal line contours

O

outer bounds

——)

path

Figure 1: A sample VectorRace game

e Vectors are written in boldface, e.g.
v, r, etc. The elements of a 2-
dimensional vector v are denoted v, and
vy, respectively.

e Points are written as uppercase letters,
e.g. A, B, etc. The coordinates of a 2-
dimensional point A are denoted A, and
A,, respectively.

e Sets are generally written in this format:
Set, except the set of whole numbers,
Z. Sets superscripted with a number n
denote the cartesian product of n sets, e.g.
72 =7 x 7.

2 VectorRace Model

The VectorRace game is modelled by a track
definition and a game definition. The track
definition depends upon a definition of line
segments.

2.1 Line Segment

A line segment is defined as a pair:

(A1), Are?Zz?

The set of points (z,y) in the line segment
satisfy the equation:

M—Aﬂr, tel0;1]
Yy

Since the line segments have a starting
point A and an ending point A + r, they are
actually directed line segments. However, for
the sake of brevity, we shall just call them line
segments.

To investigate whether two line segments
(A,r) and (B, s) intersect, we solve:

A4+tr=B+us

The solutions are!

‘(Bz - Ax) —Sz| [Tz (Bx - Ax)
(t,u) = (By — Ay) —sy| |ry (By—Ay)
’ Ty —Sg ’ Tx —Sg

Ty —Sy Ty —Sy

If t,u € [0;1], then the two line segments
intersect.

2.2 Track
2.2.1 Intuition

A VectorRace track is modelled as a 6-tuple
consisting of two points defining a rectangle
that is the outer bounds of the track, a set
of line segments defining the contour of the
track, a starting point, and a goal line with
an accompanying crossing direction vector,
specifying the correct direction in which to
cross the goal line.

"Recall that | 21 ;1 | = a1bs — asbi.

2.2.2 Definition

A Vectorrace track is a 6-tuple,

(BL,TR,Con, S,GL,CD).

e BL,TR € 7? are two points defining the
outer bounds of the track. We say that a
point A is within bounds if

BL, <A, <TR, N BLy<A,<TR,

We say that a point A is on the bounds if

A, =BL,VA,=TR,
A A,=BL,VA,=TR,

e Con is a finite set of line segments defining
the contours of the track. For all (A,r) €
Con, A and A + r must be within bounds
or on the bounds.

e S € 72 is the starting point of the track. S
must be within bounds.

e (L is aline segment defining the goal line.
IfGL = (A,r), Aand A+r must be within
bounds or on the bounds.

e CD c 72 is the crossing direction vector,
which must fulfil CD 1 GL

Figure 2 shows an example of a very simple
track.

2.3 Game
2.3.1 Intuition

A VectorRace game is modelled as a sequence
of configurations selected by the player, each
configuration being a pair (A, v), where the
point A determines the position of the player’s
vehicle and the vector v defines the current
velocity of the vehicle.

TR

CD

GL

N

BL XU

Con

(Note that CD is shown as a wide arrow on top of the goal
line pointing in the direction of CD.)

Figure 2: Example track

In the first turn, the starting point Ag is
set to the starting point of the track, S. The
starting velocity is always vy = [)]. In the
following turns, the player may optionally
modify the velocity vector of the previous
move with 1 in any direction. This is called
acceleration, and is denoted a. This notion of
acceleration yields a maximum of 9 different
configurations each turn.

The game is finished in one of two cases:

1. The game is won if the vehicle crosses the
goal line in the direction specified by CD

2. The game is lost if:

(a) the line segment from the position
of the previous configuration to the
position of the current configuration
intersects with a line segment of the
track

(b) the current configuration is out of
bounds

2.3.2 Definition

In the following, {—1,0,1}? denotes the set
of all vectors where both coordinates are
elements in the set {—1,0,1}.

A configuration is defined as a pair (A4, v),
where A is the position of the vehicle, and v is
the velocity.

Given a track (BL,TR, Con, S,GL,CD), we
define a game to be a finite sequence of con-
figurations {(Ao, vo), (A1, V1), ..., (4n, Vi) },
where Ag = S, vg = 0, and
forall1 <i < n:

o (A;,v;)=(A4;,_1+v;_1+a,v;_1+a) where
ac{-1,0,1}?

e The line segment from A; 1 to A; does not
intersect with any line segment in Con

e A; must be within bounds

e The line segment from A;_; to A; does not
intersect with GL

For i = n:

o (Aj,vi) = (Ai_1+Vvi_1+a,v;_1+a) where
ac{-1,0,1}?

e The game is won if:

— the line segment from A, | to A,
intersects with GL

- A, 14,-CD >0

— the line segment from A, ; to
A,, doesn’t intersect with any line
segment in Con

- A, is within bounds
- An—l 7é S

e Otherwise, the game is lost

If A,_1A, - CD > 0, the angle between the
vectors is below 7, meaning that the goal line
was crossed in the correct direction. If the
starting point selected by the player is on the
goal line, the player would win automatically
in the first turn. To avoid this, the winning
move must start from another point than S.

2.4 Formal Problem Definition

In this section we formally define the problem
of finding the fastest path through a given
VectorRace track. Before doing so we need
some definitions.

Definition: Game Strategy

Given an instance of a VectorRace
track, a game strategy is a game that
is won.

A game strategy is an optimal game strategy
(OGS) if it has the shortest possible length
given the VectorRace track. Such an OGS
represents the fastest path through the track.

We can now formally define the problem to
be solved:

Definition: OGS Problem

Given an instance of a VectorRace
track, find an OGS.

We want to analyze the time (and space)
complexity of the OGS problem, and we want
to provide an efficient algorithm for solving it.

2.5 Game Strategy Count

Given an instance of a vector race track, how
many different game strategies are possible? If
only a finite number of strategies existed, and
we could list all such strategies, an algorithm
for the OGS problem could list all the possible
strategies and select the shortest.

Figure 3 on the following page shows a
game strategy for a track. The configurations
of the strategy are denoted Cy, C1,...,C7 etc.
It is obviously not an OGS. Notice that Cy, = Cy
(they are on the same position and they both
have the velocity v = [_01]).

Another possible strategy is:

Co
C1.Cs5 Cy
CZ:CG 03
C7

Figure 3: Strategy with duplicate configura-
tion

Co, C1,C3,C3,C4,Cs5,Co,C3,Cy, Cs, C, Cr

In fact, an infinite number of different game
strategies can be defined by repeating the
sequence Cs, C3,(C4, C5 any number of times
before continuing.

As the number of possible strategies for most
tracks is infinite, it is impossible to list them
all.

3 OGS Algorithm

3.1 Description

As argued it is not possible to list all possible
strategies, and therefore an algorithm for
solving the OGS problem needs to take a
different approach. Given an instance of a
VectorRace track, we can search for an optimal
solution using a breadth-first search algorithm.
Such an algorithm is presented in this section.
The algorithm is named BFS-OGS and is listed
as Algorithm 1 on page 7. Please note that
remarks are written in italics.

The algorithm uses the following proce-
dures:

Enqueue(Q, r) enqueues element z in
queue Q

Dequeue(()) dequeues and returns the
first element in the queue

Add(S, z) add element x to the sequence
S

Collision(7,1) —if | = (A, r) is a line seg-
ment and 7' = (BL,TR,Con, S,GL,CD)
is a track, Collision (7,) returns true if:

— [intersects with any line segment in
Con

- the line segment [crosses GL
in the wrong direction (see Sec-
tion 2.3.2 on page 3)

— A or A +r are out of bounds

and false otherwise.

e Goal(T,!) returns whether line segment /
intersects the goal line on track T’

BFS-OGS takes an instance of a vector race
track T = (BL,TR,Con,S,GL,CD) as input
and returns an OGS or null if no game strategy
for the track exists.

The algorithm initially adds the start config-
uration (S, 0) to a set of visited configurations
VC, and enqueues a pair consisting of the
start configuration and an empty sequence to
a queue (). The sequence P in an enqueued
pair ((A,v), P) contains the configurations on
the fastest path from S to A, not including
the configuration (A, v) itself as that would be
redundant.

The configurations in the queue () are
configurations for which new paths have to be
explored. When a pair ({4, v), P) is dequeued,
all possible moves from the configuration
(A,v) are examined, and depending on
whether the moves are non-colliding, possibly
9 new configurations have to be examined.

These new configurations are enqueued as
pairs with the fastest path from S to (A,v)
by extending P. When configurations are
enqueued in @, they are also added to VC.
The set VC is used to ensure that the same
configuration is never enqueued twice.

The algorithm terminates when (i) the goal
line is crossed in the correct direction, or (ii)
the queue is empty. If the goal line is crossed,
the path P to the winning configuration is the
OGS and is returned. On the other hand, if the
queue is emptied no path from S crossing the
goal line exists.

3.2 Correctness Proof Outline

Here, I will outline a correctness proof for BFS-
OGS. The algorithm should have the following
properties — it must:

1. check all legal paths, in order of path
length

2. never examine more than one path to any
given configuration

3. return a game strategy when it is found

4. return null if no game strategy exists for
the given track

Properties 1, 3, and 4 ensures a breadth-
first search of every legal path. Property 2
guarantees that the algorithm always termi-
nates, even if no game strategy for the track
exists, as there is a finite number of unique
configurations on any track. If all 4 properties
are satisfied, it follows that the algorithm,
given a track, will return the OGS if a game
strategy exists, and null otherwise.

The 4 properties are investigated in detail
below:

1. In line 3, the starting configuration is
enqueued in (). From that configuration,

configurations from all 9 acceleration
possibilities are generated in lines 7 and
9. The collision check in line 10 ensures
that the illegal ones are discarded. All
the legal new configurations are added to
Q@ in line 16. When returning to line 4,
all these new configurations just added to
@ are checked similarly. When repeating
this process until no legal configurations
are left, property 1 will be satisfied.

2. Line 2 puts the starting configuration
into VC. In line 15, any non-winning
configuration is added to VC. Line 10
ensures that only configurations not in VC
are checked. This satisfies property 2.

3. Lines 11-13 ensures that the path to the
goal line (the game strategy) is returned
when the goal is reached, and thus
property 3 is satisfied.

4. If is emptied, the while loop drops out
to line 21, where null is returned. This is
only performed when all legal paths has
been investigated due to property 1, and
thus property 4 is satisfied.

This concludes the outline of the correctness
proof of BFS-OGS.

4 Time Complexity

We analyze the time complexity of the BFS-
OGS algorithm in terms of the number of
contours on the track, |Con|, and the total
number of configurations of the track, TNC.
TNC is bounded, as the number of positions
on a track is finite and the maximum and
minimum velocity at any point also is bounded
by the dimensions of the track. The actual
value of TNC is investigated in Section 6 on
page 9.

First we consider the operations introduced
in the algorithm. The Enqueue, Dequeue

Algorithm 1 BFS-OGS

Require: T = (BL,TR,Con,S,GL,CD) is a track

Ensure: BFS-OFS returns an OGS or returns null if no game strategy exists for T’

1: Q0

2: VC — {(S,0)}

3: Enqueue(Q, ({S,0),0))
4: while Q # () do

dequeue a configuration and a path
for all possible accelerations

make new configuration)
if it’s OK, and we haven’t visited it before

just another new configuration

5. ((A,v), P) < Dequeue(Q)
6: P« Add(P, (4,v))
7: forallae {-1,0,1}*> do
8: l— (A, v+a) make line segment
9: C—(A+v+av+a
10: if - Collision(7,1) A C ¢ VC then
11: if Goal(7', 1) then success!
12: P — Add(P,C)
13: return P
14: else
15: VC — VCU{(A,v)} been here
16: Enqueue(Q, (C, P)) add it to the queue
17: end if
18: end if
19: end for

20: end while
21: return null

no game strategy exists for this track

and Add operations can be implemented in
constant time if the queue @) and the sequence
P used by these operations are implemented
as linked lists. Goal can be implemented in
constant time.

As the Collision operation in the worst case
has to check for collision with all the contours
on the track (the worst case is when the passed
line segment does not collide with any of the
line segments in Con), the operation depends
on |Con|.

The final non-trivial operation is the check
C ¢ VCinline 10. In the worst case the whole
set has to be examined. Thus, the operation
is bounded by the maximum size of the set,
which corresponds to the maximum number
of different configurations the algorithm will
examine, i.e. TNC.

We also have to determine how many
iterations the while loop in line 4 performs in

the worst case. The set VC ensures that the
same configuration is never enqueued twice,
and as exactly one configuration is dequeued
in each iteration of the loop, the number of
iterations must be TNC in the worst case.

The cost factors are shown in Table 4 on the
following page where ¢ denotes constant time.
The worst case time complexity of BFS-OGS is

O(TNC - (|Con| + TNC))
= O(TNC - |Con| + TNC?).

Since lookup in the set VC has a worst
case time complexity of TNC, a more efficient
configuration container data structure could
greatly improve performance. As the elements
in VC are unique and the total number of
configurations is bounded, the set could be
replaced by a boolean array; at the start of the
algorithm, all values in the array are initialized

c 1: Q0
c 2: VC — {(S,0)}
c 3: Enqueue(Q, ({S,0), 1))
TNC 4: while Q # () do
c 5. ((A,v), P) «— Dequeue(®)
c 6: P« Add(P,(4,v))
9 7: forallac {-1,0,1}? do
c 8: l— (A,v+a)
¢ 9: C— (A+v+a,v+a)
|Con[+ TNC 10: if - Collision(7',1) A C ¢ VC then
c 11: if Goal(T',1) then
¢ 12: P — Add(P,C)
c 13: return P
14: else
c 15: VC — VCU{(A,v)}
c 16: Enqueue(Q, (C, P))
17: end if
18: end if
19: end for

20: end while
21: return null

Table 1: BFS-OGS time complexity

to false, as no configurations have been visited
at this stage. To mark a configuration as
visited, the given configuration is converted
to an index value for the array, and the
array value at the index is set to true. A
similar procedure is then used to check if
a configuration has been visited. If the
conversion from configuration to array index is
constant time, this array-based configuration
container is very time-efficient, as it reduces
the overall time complexity of the algorithm to

O(TNG - |Con| + TNC).
In Section 6 on the next page, we will

develop a function that computes a tight upper
bound for TNC.

5 Space Complexity

In this section, the space complexity of the

that the track definition is not a part of the
space requirements of the algorithm.

In order to analyse the worst case space
complexity of BFS-OGS we have to determine
the space usage of the data structures in the
algorithm, i.e. the queue Q, the set VC, and
the paths P.

In the worst case, all possible configurations
are added to VC. Thus, the space consumed
by VC is bounded by TNC. Each time a
configuration is dequeued from @, 9 distinct
configurations are in the worst case enqueued
to Q. This worst case scenario implies that
when all configurations are contained in VC,
8 out of 9 configurations are contained in
Q. As previously mentioned, the number of
configurations is bounded by TNC, thus the
number of configurations in @Q is %TNC
O(TNC).

Each configuration in @) is paired with a
path P. In principle the lengths of these paths

BFS-OGS algorithm is analyzed. It is assumed can range from 0 to TNC, and as %TNC paths

8

in worst case are present in) this will be
very space consuming. However, an important
observation is that when 9 new configurations
are enqueued, they all share the same path. An
efficient implementation could use references,
such that each enqueued configuration has a
reference to its predecessor configuration on
the path from the start configuration. This
consumes only the space required for one
reference for each configuration, and is thus
bounded by O(TNC).

Therefore, the worst case space complexity
of BFS-OGS using references is bounded by

O(TNC) + O(TNC) + O(TNC) = O(TNC).

6 Number of Configurations

In this section, we will find an upper bound
for TNC for any track, and develop a function
TNC() that computes this upper bound from
the dimensions of a track®. Based on this,
we will develop a new configuration container
data structure as a replacement for the set VC.

The upper bound for TNC on any track is
equal to the number of configurations on an
empty track with the same dimensions as the
given track.

First we observe that horizontal movement
is entirely independent of vertical movement;
in each turn, a player may accelerate —1, 0
or 1 horizontally as well as vertically. To
simplify matters, we investigate an empty
one-dimensional track where only horizonal
movement is allowed.

2Please note that the value TNC refers to the number
of configurations on the actual non-empty track, whereas
the function TNC() returns an upper bound for this value

>

(position 1 is the leftmost possible position)
position |1 2 3 4 5 6 7 8 9 10
U o 1 1 2 2 2 3 3 3 3
NV, 1 2 2 3 3 3 4 4 4 4

Figure 4: Maximum Right Velocities

6.1 One-dimensional Track

For simplicity, it is assumed that BL = (0,0) in
this section.

The maximum velocity in the right direction
(v,) at position 1 is 0, as the player could only
be in the leftmost position of the track if he
moved there from the right or is standing still.
If the player moves right to position 2, v, =
1. However, the player cannot have a v, = 2
to the left of position 4, because he only can
accelerate 1 each turn.

The number of possible velocities in the right
direction (NV,.) is always v, + 1. For instance,
if v, = 3, the possible velocities are 0, 1,2
and 3. Figure 4 show this relationship for
the 10 first positions. NV,, the sequence
1,2,2,3,3,3,4,4,4,4, etc., is the self-counting
sequence[3], and is given by:

NV, (i) = B - @J :

The number of possible velocities in the
left direction are calculated similarly from the
maximum velocity in the left direction (v;).
The number of configurations for each position
(NC) is the number of right and left velocities
added together minus 1 as the velocity 0 is
counted twice (see Table 2 on the next page).
Thus, the total number of configurations on an
empty one-dimensional track with n positions
(TNC1(n)) is:

position |1 2 3 4 5 6 7 8 9 10
NV, 1 2 2 3 3 3 4 4 4 4
NV; 4 4 4 4 3 3 3 2 2 1
NC 4 5 5 6 5 5 6 5 5 4

Total number of configurations,
TNCL(10) =2 %1%, |3 + V2| - 10 =50
(the sum of the last row in the table).

Table 2: Number of Configurations

TNC1(n) = 226 B + \/ZJ —n.
=1

6.2 Two-Dimensional Track

Using the function TNC1, the number of
configurations on an empty two-dimensional
track can easily be calculated.

At each position in an empty two-
dimensional track, a number of horizontal
and vertical velocities are possible. As
the horizontal and vertical velocities are
independent, the number of configurations at
a given position is the number of horizontal
velocities multiplied with the number of
vertical velocities. It is then easily verified that
the number of configurations on an empty
w x h track (TNC(w, h)) is

TNC(w, h) = TNC1(w) - TNC1(h).

Figure 5 shows calculation of TNC(5,3).
First, we calculate TNC1(3) = 7 and compare
the result with the sum of the last row in the
table. Then, we calculate TNC1(5) = 17. The
last table shows the number of configurations
at each point in the 5 x 3 track. The sum of
these is 119, as is TNC(5, 3).

Figure 6 shows the relationship between the
dimensions of square tracks and TNC(). It is
obvious that the space requirements for large
tracks are considerable.

Number of configurations on a 3 x 1 track:
position | 1 2 3

NV, T 2 2
NV, 2 2 1
NC 2 3 2

TNCL(3) =250, |3+ V23| -3=7

Number of configurations on a 5 x 1 track:

position |1 2 3 4 5
NV, 1 2 2 3 3
NV, |3 3 2 2
NC 3 4 3 4 3

1
TNC1(5) = 23°7_, E +vV2 5| —5=17

—

of horizontal
configurations | 3 4 3 4 3
2 6 8 6 8 6
vertical 3 9 12 9 12 9
2 6 8 6 8 6

Total number of configurations,
TNC(3,5) = TNCI1(3)-TNCI(5) = 7-17 = 119.

Figure 5: Configurations on Two-Dimensional
Track

1.2e+06

800000 - B
w
)
O /
zZ /
~ /

400000 - // g

/
/
/
e
%
0 b—— | | | B
20 40 60

This plot shows the relationship between track size and the
upper bound for the configuration count on tracks with
dimensions s x s.

Figure 6: TNC() as a function of track size

10

6.3 Configuration Container

This upper bound for the number of configu-
rations can be used to create a configuration
container for the BFS algorithm. The container
is essentially an two-dimensional array with
some extra offset information.

The container depends on storing two lists
of offsets, for horizontal and vertical indexing,
respectively. Algorithm 2 on the following
page calculates the offsets for one of the
dimensions. Horizontally, v(i) — 1 represents
the maximum velocity in the left direction at
position 4. Vertically, v(i) — 1 represents the
maximum velocity upwards at position 4.

The offset lists, here called xOffset and
yOffset, are used to index a configuration
(A, v) in the configuration container array:

xIndex = x0ffset[A,;] + v,
yIndex = yOffset[A4,] + v,
visited = VCArray|xIndex|[yIndex]

This indexing method ensures that there is
exactly one unique index in the configuration
container array for every possible configura-
tion on an empty track.

As a very simple example, consider a one-
dimensional track with 5 positions. The fol-
lowing offset list is returned by createOffsets:

offset[l] =v(1) =2

offset[2] = offset[l] — v(1) + NC(1) 4+ v(2)
=2-2+3+2=5

offset[3] = offset[2] — v(2) + NC(2) + v(3)
=4-1+4+1=28

offset[4] = offset[3] — v(3) + NC(3) + v(4)
=8—-1+3+1=11

offset[5] = offset[4] — v(4) + NC(4) + v(5)
=11-1+4+0=14

Table 3 on the next page shows all possible
configurations on an empty one-dimensional
track with 5 positions as A, and v,. The result
of adding the offset list values to the velocity
is a sequence of unique array indices.

On a w x h track, the two lists have a
combined space requirement of O(w + h).

The VC array for a track with dimen-
sions w x h should have the dimensions
TNC1(w) x TNC1(h). It follows that the
space requirement for container is O(TNC)
+ the insignificant space consumed by the
offset arrays. If the algorithm used a set
for VC, the average case space requirement
would be less than the worst case, especially
if the tracks has contours on it, as this
reduces the number of legal configurations
on the track. This container always uses the
same amount of space, so the average case
space requirements are equal to the worst
case space complexity, O(TNC). However, the
fact that array lookups can be performed in
constant time, and that the time complexity
of createOffsets is insignificant, yields a
significant time performance gain.

7 Results

During the writing of this article, an im-
plementation of the BFS-OGS algorithm was
created in the Java programming language.

An implementation using the configuration
container developed in Section 6.3 had con-
siderably better time performance than an
implementation using a Java ArrayList-based
implementation of a set. Figures 7 and 8
shows this difference in performance.

The space complexity of the BFS-OGS al-
gorithm prevents an implementation that can
handle very large tracks. The implementation
developed during the writing of this article
could not handle tracks larger than 200 x 200
on state-of-the-art computer hardware.

11

Algorithm 2 createOffsets
offset[l] « v(1)
for i = 2 to size do
offset[i] « offset[i — 1] —v(i — 1) + NC(: — 1) + v(4)
end for
return offset

5 5 5

w

Az

(%
offset[A,]
xIndex

4 4 4 4
10 1 2]0 1 2
11 11 11 11 |14 14 14
|10 11 12 13|14 15 16

'
—

KUl ON

3
1
8
9

olN o+
=N L=
NN O =
WU o N
EN Y, B N}
AN = DN
o)
®(o O w

| 7

Table 3: Computing array indices from configurations

| | 8 Applying Binary Decision Dia-
| grams

1500 | 4

100 | | | The problem of finding the fastest path in a

VectorRace track could also be solved using

500 g Binary Decision Diagrams (BDDs)[1]. Here,
, e such a BDD solution is outlined.

0 ;*:* " ‘ ‘] The BDD approach requires that the prob-

5 10 15 20 25 % lem can be evaluated as a boolean expression,

track size which makes it necessary to convert the OGS

The topmost curve is the performance of the ArrayList-based . ..
implementation, and the lowermost curve is the performance PrOblem to a boolean expression. This is

of the configuration container developed in Section 6.3, both accomplished via the following steps:
as a function of track size.

2000

time

1. Define the function Collision using only

Figure 7: Performance of 2 different BFS-OGS - i 5
whole numbers and basic logic and arith-

implementations :
metic operators. Collision must evaluate
the formula shown in Section 2.1 on
70000 ‘ ‘ ‘ ‘ ‘ page 2. The formula has fractions, but
60000 1 this is not a problem, as we only need to
50000 VA find out whether ¢ and u are contained in
g 0000] the interval [0;1]. This problem can be
S 30000 1 reduced to:
20000 - 1
10000 | o] (a) the whole fraction is negative if and
0 : : e ——] only if only one of the numerator and
® 10 o % % denominator are negative
track size
Same results as Figure 7, plotted with a different scale on the (b) the whole fraction is larger than 1 if

y-axis. and only if the numerator is larger

Figure 8: Performance of 2 different BFS-OGS than the denominator

implementations - zoomed out .
If none of the above propositions are true,

12

the fraction is in the interval [0;1], and
Collision can return false.

The rest of the problem is trivially
converted to whole numbers and basic
arithmetic and logic operators.

2. The whole numbers of the arithmetic
expressions are converted to binary num-
bers, which can be expressed as boolean
formulas with one variable for each bit in
the number. Of course this demands a
limit for the number of bits per number
and thus a limit of the magnitude of the
numbers. The largest number to evaluate
can be computed from the dimensions of
the track.

3. The arithmetic operators are then ex-
pressed as boolean propositions: binary
addition, binary multiplication, binary
negation, greater-than, and the sign
function. As an example, the binary
addition proposition (with only 2 bits)
would have this form:

add(ag, a1, bo, by, co, 1)

and would return the value of the
proposition a+ b = ¢ given that the binary
digits of a are ag and a4, etc.

The subtraction operator can be created
as a combination of addition and nega-
tion, and the sign function is needed for
the fractions mentioned earlier.

By combining conversions of the collision
checks and the remaining rules, a BDD can
be algorithmically created for any track, and
it can be used to find all paths that evaluate
the expression to true.

This approach, however, has a problem: the
line segment intersection formula described in
Section 2.1 on page 2 uses a relatively large
number of multiplication operations. A result
from Randal E. Bryant’s article [2], states that:

The OBDD representations of the
multiplication [...] function are
always of exponential OBDD size
independent of the chosen order of
the input variables.

Thus, a BDD-based solution of the Vector-
Race problem as defined in this article will
most likely not be more efficient than the BFS-
OGS algorithm, as the BDDs will become too
large.

9 Conclusion

A model for the game of VectorRace has been
developed and the problem of finding the
fastest path from starting point to goal line has
been defined. The model is very flexible and
almost any conceivable two-dimensional track
can be defined.

An algorithm that finds the fastest path
through any given track has been created,
and it has been analyzed for time and space
complexity. Based on this analysis, I have
developed a data structure that greatly reduces
the time complexity of the algorithm.

I have attempted an application of binary
decision diagrams to the problem, but a BDD-
based solution is probably less efficient than
the BFS-OGS algorithm.

Tests show that the algorithm works and
the new data structure greatly improves
performance, though the space complexity of
the problem prohibits finding fastest paths on
tracks with very large dimensions.

10 Future Work

The algorithms and data structures presented
in this article can trivially be extended to three
dimensions, and thus be used for finding the
fastest path through any 3D environment that
can be defined discretely.

13

The BFS-OGS algorithm could be optimized
with simple heuristics, such as trying a depth-
first search in the direction of the goal line
before doing the breadth-first search, thus
improving the average-case performance.

The algorithm could also be used to find an
approximation of the fastest path through a
non-discrete environment.

Acknowledgements

Thanks to Anders Bennett-Therkildsen, Jeppe
Carlsen, Andreas Bue Holmgaard Madsen, and
Kristian Stougaard Ahlmann-Ohlsen for initial
cooperation.

Special thanks to Jeppe and Anders.

Thanks to Hans Schmid for mathematical
ideas.

References

[1] Henrik Reif Andersen. An introduction
to binary decision diagrams.
http://www.itu.dk/people/hra/bdd97.ps, 1998.
Lecture notes.

[2] Randal E. Bryant. On the complexity
of vlsi implementations and graph
representations of boolean functions
with application to integer multiplication.
http://www.cs.cmu.edu/ bryant/pubdir/ieeetc91.pdf,

1991.

[3] Eric W. Weisstein. MathWorld,
”Self-Counting Sequence”, 2005.

http://mathworld.com/Self-CountingSequence.html.

[4] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition.
MIT Press, 2001. ISBN: 0-262-03293-7.

14

