
The Boy from INSIDE

AES 2016
Jakob Schmid
PLAYDEAD

Uncompromising Character Audio Implementation

Me
Jakob Schmid

Audio programmer at PLAYDEAD

Composer and sound designer by night

● Introduction
● Animation events
● Cloth
● State, analysis, rendering
● Voice sequencer

Overview

Slides will be available online!

INSIDE

PLAYDEAD

Released soon for Xbox One

Commenced 2010

Martin Stig Andersen

audio director, sound designer, composer

Andreas Frostholm sound designer

Søs Gunver Ryberg composer, sound designer

Jakob Schmid audio programmer

Playdead Audio Team

Technology
Unity

Audiokinetic Wwise

Modified Wwise-Unity plugin

PlayMaker

scene: #3D_crane

DEMO: Animation Events

Animation Events

Animation Events
● Set up per animation
● Animation event types:

○ Custom
○ Matrix
○ Footstep

● Also used for VFX

Custom Animation Events
● Name of sound event specified directly
● Fires when animation frame has been passed
● Checks layers: ground, water, air

frame layers

sound event
name

Wet Animation Events
● Optionally plays additional wet sound event
● Current wetness is sent as a parameter

○ Is set high when in water or on a wet surface
○ When dry, approaches 0 over time

add wet event

Matrix Animation Events
● Matrix key instead of sound event name
● Context-dependent sounds

e.g. from 'run' to 'stop' yields 'brake'

matrix key

Matrix Animation Events

previous key current key

current key: jog

● Current key is specified in current animation event

Current Matrix Key

jog

Previous Matrix Key

previous key: idle
idle

● Previous key was specified in previous
animation event

Play Sound

previous key: idle current key: jog idle jog

play sound 'takeoff_mf'

Context Sensitivity

previous key: sneak current key: jog sneak jog

play sound 'walk'

● If previous matrix key was 'sneak',
a different sound is played

Column Default

previous key: idle current key: run idle run

play sound 'run'

● Empty entries are replaced with
column default

Footstep Animation Events
● Matrix events!
● Key is determined from movement speed:

○ idle : speed < 0.07
○ sneak : speed < 0.37
○ walk : speed < 0.70
○ jog : speed < 0.92
○ run : speed < 1.30
○ sprint : speed >= 1.30

● Robust with smooth animation blending
● Simple to define

● Custom events specify sounds directly
● Matrix events are used for context-sensitivity
● Footstep events are matrix events, automatically selected based on speed

Animation Events Summary

Cloth

Cloth
● Sound of clothes rubbing against itself
● Generated at runtime from character geometry
● Sounds are selected based on movement speed

Elbow Torso Pass

● Send elbow speed parameter
● Play sound when elbow enters 'brush zone'

Elbow Torso Pass

brush brush

Arm Angle

Cloth Summary
● Sound events generated from geometry
● Tracking a single elbow was enough
● Creates coherence between discrete foley sounds

State, Analysis, Rendering

● Boy audio feature set grew a lot during development
● Debugging was tricky
● Called for a well-defined and easy-to-debug audio state

Boy Audio

● General audio state for boy
● Used by several components
● Well-defined state for every frame

Effect State

Effect State

animation

ground
material
ladder

velocity
landing impact

water state
wetness

etc.

Effect Analyzer

Effect Analyzer

Effect State

writes to

● Aggregates state from analysis of
○ Animation system
○ Physics data, e.g. velocity
○ Collider metadata, e.g. material

● Responsible for updating Effect
State

animation

ground
material
ladder

velocity
landing impact

water state
wetness

etc.

Effect Analyzer

Effect State

is read by

Audio
Rendering

Audio Rendering Components
● Set parameters and play sounds

exclusively based on Effect State
● Never modify Effect State

Effect Analyzer

Effect State

Structural Benefits
● Effect State can be shown as debug

information
● Bugs are divided into two groups:

○ State is wrong: buggy analysis
○ State is right, sound is wrong: buggy rendering

● Ordering of data sent to sound engine is
explicit

debug information

isLanding true
landImpact 0

etc.

Audio
Rendering

● State should be double-buffered
● Sounds are often a response to a state change
● Certain data from previous frame needed

Double-buffered State

Effect State

previous

isLanding false
landImpact 70

etc.

current

isLanding true
landImpact 0

etc.

Example: Land Impact

isLanding false
landImpact 70

land animation
is not playing

Example: Land Impact

isLanding false
landImpact 70 based on velocity in

the direction of
surface normal

Example: Land Impact

current

isLanding true
landImpact 0

previous

isLanding false
landImpact 70

isLanding has changed to true: just landed!

Example: Land Impact

current

isLanding true
landImpact 0

previous

isLanding false
landImpact 70

use previous frame impact

Result

Effect State

previous

isLanding false
landImpact 70

etc.

current

isLanding true
landImpact 0

etc.

● Set land impact parameter to 70
● Play land sound

scene: #3D_crane

DEMO: State History

State Update
● Effect Analyzer

○ Aggregate data
○ Write to Effect State (current)

● Render audio based on Effect State
○ Set values based on previous or current frame state

○ Play sounds as reaction to changes from previous to
current

● Copy current state to previous

Read
Write

Effect Analyzer

Effect State

Audio
Rendering

Update Effect State

...

...

Update Effect State

1. Render audio based on Effect State
2. Copy current state to previous

Order Matters!

keep these two
together to avoid
missing any
changes

Effect Analyzer

Boy Audio Architecture
Read
Write

General
Foley

Cloth

Anim Event
Player

Effect State

Effect Analyzer

Boy Audio Architecture
Read
Write

Ragdoll

General
Foley

EnvelopesCloth

Anim Event
Player

Effect State

Effect Analyzer

Foley Voice
Full Boy Audio Architecture

Ragdoll

General
Foley

Envelopes

Voice State

Voice Analyzer

Anim Event
Player

Cloth

Effect State

Voice Sequencer

Read
Write

State, Analysis, Rendering Summary
● Analyzer determines state from game
● State is double-buffered to detect changes and access

previous frame data
● Rendering is performed based exclusively on State
● Debugging is easy and errors are trivially categorized

Analyzer

State

Rendering

Voice Sequencer

Voice Sound Events
● Played by voice sequencer
● Two modes:

○ Continuous
○ Rhythmic breathing

● Which sound to play is defined by parameters:
○ Action
○ Emotion
○ Intensity
○ etc.

● Intensity is a numeric value:
○ increases with physical exertion
○ decreases when idle

Voice Sequencer: Continuous Mode

set action, emotion,
intensity, etc.

play sound

Voice Sequencer: Continuous Mode

play sound wait for sound to finish

set action, emotion,
intensity, etc.

Voice Sequencer: Continuous Mode

play sound

update breath cycle
(inhale/exhale)

wait for sound to finish

set action, emotion,
intensity, etc.

Animation Feedback
● Breath sounds have varying durations
● Continuous sequencing results in natural, uneven

breathing pattern
● Every breath results in a callback to the game
● Callback controls additive breathing animation

Holding Breath
On jump:

if currently inhaling, stop afterwards

if currently exhaling, do a quick inhale, then stop

On land:

restart breathing with exhale

Engagement Actions
Special actions indicate performing work, uses different set of sounds

not engaged engaged passive engaged active

Voice Sequencer Configuration
● Trigger boxes
● State machines
● Scripts
● Gives full control over voice parameters

Voice Sequencer Configuration: Trigger box

Voice Sequencer Configuration: State Machine

Voice Action Override
● Action is normally determined automatically from animation
● Can be overriden
● Enables defining voice reactions in custom situations
● Includes engaged active/passive

Voice Emotion
● Emotion selects a specific set of voice sounds
● Relaxed, frantic, relieved, etc.
● Morphing allows automatically changing emotion after a specified time

Voice Intensity Clamping
● Voice Intensity selects depth and

force of breathing
● Clamping limits intensity value min

and max
● Depending on the emotion

parameter, intensity defines:
○ Physical exertion level
○ Intensity of character emotion

● Morphing allows clamping to change
gradually

● Voice configuration is our way of doing voice direction.
● The director (Martin) instructs the actor (voice sequencer) how to emote:

○ based on location on the set (trigger boxes), or
○ based on reacting to events (state machines or scripts)

Voice Direction

DEMO: Voice sequencer
scene: #forestReveal

emotions, rhythmic breathing

Rythmic Breathing
● Goal: breathing aligns with footsteps when running
● 1 breath for every 2 steps
● Aligns gradually to sound natural

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

wait for sound to finish

Voice Sequencer: Continuous Mode

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

wait until next rhythmic
breath time

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

wait until next rhythmic
breath time

determine footstep
rhythm???

Defining Rhythm
● We want to define a rhythmic phenomenon at a point in time
● Frequency
● Phase

Footstep Phase

0.00 0.25 0.50 0.75 0.00

footstep
right

footstep
left

footstep
right

Footstep Phase
0.00

0.25

0.50

0.75

footstep right

footstep left

● Full cycle is 2 steps
● Right footstep on 0.0
● Left footstep on 0.5

Footstep Frequency
On right footstep animation event:

 phase = 0

 frequency = 1 / (currentTime - lastRightStepTime)

lastRightStepTime = currentTime

● Interpolation is used to smoothen measured frequency
● We actually use footsteps from both feet for more precision

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

match breath rhythm
to footsteps

wait until next rhythmic
breath time

???

determine footstep
rhythm

Breath Phase

0.00

0.25

0.50

0.75

breath

● Breathe when phase is 0

Breath Frequency
● Full cycle is 1 breath
● When switching from continuous to

rhythmic breathing:
○ Compute frequency from last 2 breaths

○ Compute phase from frequency and last
breath time

0.00

0.25

0.50

0.75

breath

● Gradually align breath rhythm to footstep rhythm
● Align two frequency, phase pairs

Breath Frequency

footsteps breathing

frequency frequency

phase

phase

Solution: Beat Matching
● Gradually align breath frequency to footstep frequency
● Compensate breathing frequency for phase offset

- Like a DJ that uses pitch adjust without nudging the record

footsteps breathing

frequency frequency

phase

phase

Adjust Breath Frequency

footsteps breathing

frequency frequency

phase

phase

frequency is too low, speed up

Adjust Breath Phase

footsteps breathing

frequency frequency

compensate frequency for phase being
"behind"

phase

phase

Breath Phase Adjusted

footsteps breathing

frequency frequency

phase matches now, stop compensating

phasephase

Synchronized

footsteps breathing

frequency frequency

perfect sync!

phase phase

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

match breath rhythm
to footsteps

wait until next rhythmic
breath time

determine footstep
rhythm

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

match breath rhythm
to footsteps

wait until next rhythmic
breath time

determine footstep
rhythm update breath phase

from frequency

Voice Sequencer: Rhythmic Breathing

play sound

update breath cycle
(inhale/exhale)

set action, emotion,
intensity, etc.

update breath phase
from frequency

wait until breath
phase = 0

determine footstep
rhythm

match breath rhythm
to footsteps

precisely
defined

Voice Sequencer Summary
● Sound events are selected based on action, emotion, intensity, etc.
● Voice direction with trigger boxes and state machines
● Continuous sequencing of sound events
● Rhythmic breathing uses DJ-style beat matching to align breathing to

footsteps

Questions?

Twitter: @jakobschmid

E-mail: jakob@schmid.dk

playdead.com

game140.com

Slides are here: schmid.dk/talks/2016-02-11-aes/

Beatmatching Code - steal it!
 // Gradually matches frequency and phase of a periodic function to another periodic function (~ beat
matching).
 // Code by Jakob Schmid, PLAYDEAD, 2016. Free to use for anything.
 void MatchFreqAndPhase(float t, float dt, float targetFreq, float targetPhase, ref float freq, ref float
phase)
 {
 float smallestPhaseOffset;

 // Get phase offset
 float deltaPhase = targetPhase - phase;

 // account for phase being a modular number (0.9 is equally close 0 and 0.8)
 // - see also http://en.wikipedia.org/wiki/Modular_arithmetic
 if (deltaPhase > 0.5f)
 smallestPhaseOffset = deltaPhase - 1f;
 else if (deltaPhase < -0.5f)
 smallestPhaseOffset = deltaPhase + 1f;
 else
 smallestPhaseOffset = deltaPhase;

 // 'Beat match' freq to targetFreq and adjust phase using frequency
 float adjustedFreq = targetFreq + smallestPhaseOffset * BREATH_PHASE_ACCEL;
 if (freq < adjustedFreq)
 freq = Mathf.Lerp(freq, adjustedFreq, BREATH_ACCEL_UP * dt);
 else
 freq = Mathf.Lerp(freq, adjustedFreq, BREATH_ACCEL_DOWN * dt);
 }

AES 2016 - Abstract and CV
Title
The Boy from INSIDE: Uncompromising Character Audio Implementation

Abstract
A 5-year collaboration between sound designer Martin Stig Andersen and programmer Jakob Schmid on INSIDE,
Playdead's follow-up to award-winning game LIMBO, has led to an uncompromising audio implementation, unique in its
design choices and level of detail. This talk focuses on the design and implementation of foley and voice for the main
character of INSIDE.

It will be explained how game state and character geometry is analyzed to provide data for audio systems. A method for
context-dependent sound selection for footsteps is described, along with the implementation of a breath sequencer that
reacts to player input and animation and matches rhythmic breathing to footsteps.

Finally, a selection of tools used to configure and debug audio will be described.

CV
Jakob Schmid is the audio programmer at Playdead in Copenhagen. He has a master's degree in computer science from
Aalborg University. Since 2011, he's been working with Martin Stig Andersen on Playdead's upcoming game, 'INSIDE'.
In his spare time, he created the music and sound for colleague Jeppe Carlsen's game '140', which went on to win several
awards including the 2013 Independent Games Festival award for 'Excellence in Audio'.

